일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 | 29 |
30 | 31 |
- 개발자혜성
- eks
- Python
- hadoop
- 빅데이터
- 하둡
- 데이터엔지니어
- redis bloom filter
- 블로그
- 하둡에코시스템
- spark
- BigData
- 데이터엔지니어링
- pyspark
- dataengineer
- 추천시스템
- 클라우데라
- mlops
- AWS SageMaker
- 개발자
- Spark structured streaming
- apache spark
- Terraform
- Data engineering
- DataEngineering
- kafka
- cloudera
- kubernetes
- 빅데이터플랫폼
- recommendation system
- Today
- Total
목록Machine Learning (2)
Hyesung Oh

서론실무에서 머신러닝을 활용하는 도메인 중에서, 추천 도메인의 경우 대게 실시간성보다는 배치 파이프라인 만으로 요구사항을 충분히 만족시킬 수 있는 거 같습니다. 현재 팀에서 운영 중인 추천 파이프라인은 배치 형태이며 큰 구조에서 아래와 같은 구성을 하고 있습니다.1. 각 모델별로 필요한 원천 데이터 수집 및 가공2. 모델에 입력 가능한 input으로 변환3. model train&validation4. Batch Inference 실행 및 필요시 결과를 유저별로 aggregation 하여 DB에 업로드Airflow로 스케줄링한 DAG의 마지막 Tasks는 주로 Batch Inference 한 결과를 서비스 요구 수준에 맞는 DB에 업로드하여 API 서버에서 서빙할 수 있도록 하고 있습니다.위 파이프라인..

개요 현재 팀의 Machine Learning 파이프라인의 모델 학습 워크로드는 아래와 같은 컴포넌트들로 구성되어있습니다. 출처: https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/index.html model.train()를 entrypoint로 하는 pod pod node의 gpu resource allocation 및 container가 사용할 device config 정보를 kubelet에 등록하는 nvidia device plugin daemonset pod container runtime 및 runc prestart hook을 통해 container에서 사용할 수 있는 device를 설정해주는 nvidia cont..