일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 개발자혜성
- Python
- hadoop
- kubernetes
- spark
- AWS SageMaker
- BigData
- 데이터엔지니어링
- Spark structured streaming
- Terraform
- 개발자
- 빅데이터
- dataengineer
- 하둡
- 추천시스템
- apache spark
- mlops
- 하둡에코시스템
- 블로그
- recommendation system
- cloudera
- redis bloom filter
- 데이터엔지니어
- 클라우데라
- eks
- 빅데이터플랫폼
- DataEngineering
- pyspark
- Data engineering
- kafka
- Today
- Total
목록Data engineering (5)
Hyesung Oh
TL;DR지난 추천 시스템 고도화 시리즈의 실시간 추론 편 마지막 단락에서 계획 중인 사이드 프로젝트에 대해 말씀드렸었는데요, 운이 좋게도 사내 추천 시스템에 실시간 추론을 도입하여 사용자에게 조금 더 다이내믹한 탐색 경험을 제공하자는 방향성이 논의되어 사내 PoC Task로 진행해 보게 되었습니다 :).https://surgach.tistory.com/139 e-commerce 추천 시스템 고도화 하기 시리즈 [3] Realtime inference서론지난 게시글에서는 end-to-end 추천 파이프라인에서 꼭 필요했던 기능들을 적용하며 개선한 과정을 소개했습니다. https://surgach.tistory.com/138 e-commerce 추천 시스템 고도화 하기 시리즈 [2] AWS Sagsurg..
서론지난 게시글에서는 end-to-end 추천 파이프라인에서 꼭 필요했던 기능들을 적용하며 개선한 과정을 소개했습니다. https://surgach.tistory.com/138 e-commerce 추천 시스템 고도화 하기 시리즈 [2] AWS SageMaker model registry서론추천 시스템을 고도화하기 마음먹은 과정과 feature store 도입기에 대한 짧은 소개에 이어서, 이번 편에서는 본격적으로 파이프라인에 필요했던 개선사항들을 적용한 내용들을 정리해보려 합surgach.tistory.com이번 포스트에선 AWS SageMaker를 활용하여 실시간 추천 모델 서버를 구축해 본 경험을 정리해보려 합니다. 소위 real-time inference는 당장의 비즈니스 요구 사항은 아닙니다만,..
서론추천 시스템을 고도화하기 마음먹은 과정과 feature store 도입기에 대한 짧은 소개에 이어서, 이번 편에서는 본격적으로 파이프라인에 필요했던 개선사항들을 적용한 내용들을 정리해보려 합니다.https://surgach.tistory.com/137 e-commerce 추천 시스템 고도화 하기 시리즈 [1] feature store서론실무에서 머신러닝을 활용하는 도메인 중에서, 추천 도메인의 경우 대게 실시간성보다는 배치 파이프라인 만으로 요구사항을 충분히 만족시킬 수 있는 거 같습니다. 현재 팀에서 운영 중surgach.tistory.comManaged MLOps Platform에 올라탈 결심MLOps를 위한 Open Source Tool들이 다양했지만, 최근에는 모델 실험 및 버전 관리를 위한..
개요 Spark에서는 JDBC api를 통해 접근할 수 있는 datasource(dbms)를 지원합니다. jdbc datasource를 사용하기 위해선 JDBC interface를 구현한 Driver class가 필요합니다. *현재 사용 중인 mysql-connector-java-8.0.23을 기준으로 작성했습니다. spark.read.jdbc option으로 driver class path를 아래와 같이 설정해주면 됩니다. driver class path: com.mysql.cj.jdbc.Driver # Read from MySQL Table df = spark.read \ .format("jdbc") \ .option("url", "jdbc:mysql://localhost:3306/emp") \ .o..
EMR Core node의 hdfs (disk)의 점유율이 90% (default threshold 90%) 이상이 되어 해당 node가 unhealthy 상태인 것을 확인할 수 있습니다. If the node remains unhealthy for 45 minutes, Amazon EMR marks the associated Amazon EC2 instance for termination as FAILED_BY_MASTER.When all Amazon EC2 instances associated with core nodes are marked for termination, the cluster terminates with the status NO_SLAVE_LEFT because there are no..